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POWER LIMITS IN CYLINDRICAL
GYROMONOTRONS USING TE,,; MODE

INTRODUCTION

“Gyrotron oscillators (gyromonotrons) are of great interest as sources of high power mm-wave

radiation for heating and preionization in fusion devices. "3 The total radiation power required for

. " .

reactor size devices has been estimated at 50 - 100 MW ¥ ;t ~ fSO GHz, far beyond the present state
of the art for a single source. ¥ Since the feasibility and cost of a heating system may be strongly
dependent on the number of devices required, it is of interest to estimate the upper limit of the output
power of a single gyromonotron. In this note. we present calculations for such an estimate. In addition,
we determine the lower limit on output powers. The detailed calculations are limited to right circuiar
cavities supporting TE,A,M' modes, but some of the results are directly applicabie to other geometries.

All calculations are for devices operating near the cyclotron frequency, with a beam energy of 70 keV

- and negligible velocity spread.,

UPPER LIMITS ON THE OUTPUT POWER
1. Optimum RF Field Amplitudes and Upper Power Limits Due to a Lower Limit to Q.

As has been shov::n in a previous paper,'®’ the electronic efficiency of a gyromonotron is a func-
tion of the RF field local to the beam; thus the electronic efficiency (i.e., the basic interaction
efficiency) is independent of the radial mode number n. For a given length of the cavity there will be a
fixed RF field strength (at the beam location) for optimum efficiency, which we determine below.
Once this field magnitude is known, and the cavity and beam properties given. the resulting output

power can be predicted.

Manuscript submitted on August 4, 1980.
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READ. CHU, AND KIM
We start with the definition of Q:

21'rf WF

0= P,

0))

where fis the operating frequency, Wy the RF energy stored in the cavity, and P, the RF power cou-
pled out of and dissipated into the walls of the cavity. For a TE,,; mode in a right circular cavity of

length L and radius a,

Eg= Eo.l.la,,,-;:-l sin l{-] cos wt, Q)
and
€
W= b f g}_ av 3

where J, is a Bessel function of the first kind. In principle, the upper limit for P, will be given, for a

fixed E,, by the lower limit for Q, namely the diffraction Qgiven by

Qo = 4w (L2 @
where A is the free sﬁace wavelength. In practice, however, 2 - @, is a reasonable lower limit to Q.

Using this value for Q, we obtain

Ceamw )\

o Leom 2 2
P, 6 L a? J}(a,,) E§. &)
a,, is the n zero of J,(x).
Letting
E,= —L% ©

b
J 1 (a[ n 'a‘)
where &, is the electric field at the beam location, normalized to the frequency, and b is the average

beam radius, we obtain

3
P Sur A g _dle g ™
M e, )

a _ %
TR (8)
2
- ———— - B ——— o — —— “u 'y
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Substituting, we obtain

€¢ A i)
P, = #aﬁ, T L A LI 7 9

J[Z (a|,, %)

&, is a function of anly L/A, since it is normalized to the frequency. From computer calcula-

tions, ®

the values of &, which yield the optimum efficiency, for a given length were found. These
values are given in Fig. 1. The results of calculations for two values of «, the ratio of the perpendicular
to parailel beam velocities, with and without magnetic tapering, are included in the figure. The

efficiencies achievable for the various parameters are given in Fig 2, reproduced from Reference (6).

Using Eq. (9) and Fig. 1, the power obtainable at maximum eficiency is calculated and shown in

Figs. 3a, b, ¢, and d.

These calculations assume that the beam is located at the peak of the first maximum of E,. From
Eq. (9), and Table 1, it can be seen that higher powers can be obtained by operating with the beam on

a higher order peak, and/or off of local maximum. Calculations show that, in the absence of mode
competition, the efficiency remains essentially unchanged for (£y) peam = -;- (Eg) peaxs Where (Eg) ey is

the local maximum. Thus, enhancement of the output power by a factor of 4 is possible by operating
with the beam off a local maximum and, additionaily, by the factors given in Table 1, by placing the
beam near the higher order peaks. As an example, approximately 500 kW could be generated using the

TEy5; mode, with the beam on the 4th peak, and 2 MW would be possible by offsetting the beam to the
limit of E, = -;-(Eo),..k. We note that these calculations assume that only the mode of interest would

be excited. If other modes (such as whispering gailery modes)® have absolute maxima at the beam
position, these modes may then be more readily excited, and degrade or totally eliminate the efficiency

of the TE,,; mode of interest.

- - - o v Ao e T S W
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2. Power Limits Due to Ohmic Losses

Ohmic losses in the cavity walls will cause reduced efficiencies and, at high average power, heating

problems. We therefore caiculate these losses, and determine an associated upper limit to the output

power.

; Using Eq. (1), the power lost in a cavity can be expressed as

Pﬂ - g_; W (10)

where Q7 is the total ("loaded”) Q, and Qg is the Q due to ohmic losses in the cavity. P, is the total

power produced in the cavity. Qr is given by

i Qr=(Qa' + Qi)'

where Q, is produced by the useful power coupied out of the cavity. For small losses, Or = Q. Qqn

; for TE,,;, modes is given by ''¥

i 2w fua | als L* + =a?
4 Qﬂ -

2R an

.31
alz,,L2+2"Ta

R is the surface resistivity. Equation (11) is easily réarranged to

2w fua |l + 72a?2/L?
Q=

2R 2na’

(12)

R

For gyrotron cavities a #,>> w2a%/L%. Then

- -
e Al SIS Btrt- . o et - i B i BB . W

= 2rfua
Qn 2R . (13)

Inserting values for & = ¢ = 4-10""H/m and the surface resistance of copper, we find

Qa=15.2 /2 (MKS units) (14)

, —— - —— . >

L~

As before, we can express the wall radius a in terms of A and the zero of the Bessel function J,. Then

Aal,,
2r

-
—
.

1/2
=152l L
R

or Qn = 4.1910* \ V2%, 1)
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Using as before, the lower limit of Qy = 2Q, we find

Po_ Q0 _ 6010 12

P, Qa a, A2

P 3.46 - 1078 L?
or il U V2 &

B, = o f R (16)
If the assumption that Qy << Qg is not valid, the expression of interest is

Pa Qg Qa|™

—_— - = |] + = an

P, Or Qo

The values of Pg/P, from Eq. (16) as a function of L/A for several modes at f = 100 GHz are given

in Fig. 4.

For cavity wall heating, the average power loss per unit area is of interest. This is given by

-1
1+ % . (18)
[1]

Pﬂ ~ Pw . 34»6].0-8 fl/z

LZ
A 2mwal a,, A

The cavity surface area, 4, can be given by 2mralL since, for TE,,; modes near cutoff, the losses

are primarily in the side walls of the cavity.

Equation (18) reduces, with the assumption that Q, << Qq, to

Pa  384-10% 4, L
—_—- =P, 19)
A af, A (
2
or Pa _ 418109 £ Ji () &2 (20)
A 72 bl
1 aln-a_

Using Eq. (19), plots of the average wall heating per unit area versus L/A for various TE,,,
modes at f = 100 GHz have been produced, and are shown in Figs. 5a, b, c and d. The power densi-

ties given here will be clearly scaled by the same factors for beam location as for the total cavity power.

LOWER LIMITS ON THE OUTPUT POWER

The lower limit on the power of a gyromonotron (assuming, again, that we operate at optimum

efficiency for a given length) is determined by the tolerable wall losses.

5
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Using Eq. (1), we can write

3 12
Po" _‘0‘-‘_ L alzn : (al") 31’2 (21)
4Qo A 12 2
1[%1n a

The upper bound for Q,, the output Q, is determined by the severity of the wall losses that can

be tolerated. For, as above,

Pa  Qr Qo
P, Qo Qo+ Qg
or
P P!
o 0
QO-P—WI—P—W Ca (22)
Let _ Pa Py
3 2
Then €c L , Jilay) .,
PO 4BQQ A « 1 b Zb . (23)
le Xp =
a
Inserting Qo from equation (14), we find
' - 104 Ji(ay,)
(Po)min" 3.28 10_ fllzaln AL L ZDZ (24)
B 2 b, A
J| (a,,,, ;)

We note that (Pg),, is essentially independent of the mode (for a given beam placement) since
aJ#(a,,) is approximately constant. The largest difference occurs between the TEq, and TEq, modes
(approximately 4%). The power for the TEy; and higher modes can be approximated by the TE,;

results.

B - Py, for a frequency of 100 GHz, as a function of L/A, is piotted in Fig. 6a and b.

COMPARISON TO EXPERIMENT

Experimentai data reported elsewhere''>!¥ can be used to check the validity of the calculations

for the maximum power for the TEg,, mode. This data is plotted in Fig. 7. The actual powers

_
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observed in the experiments have been multiplied by the measured Q; divided by 2Q) since the cavi-
ties used in the experiments had values for Q; not necessarily equal to 2Qp. No magnetic tapering was
used in obtaining these points. (Interpretation of the data with tapering is somewhat complicated by
details of the experiment, and is given in Reference 11.) Within experimental error, the agreement of

experiment and theory for the data given in Fig. 8 appears quite good.

COMMENTS

All of the power limits have been derived for operation where, for a given length, the efficiency is
optimized. The fall-off of efficiency with increasing RF electric field amplitude is fairly gradual, and
some increase in power can be obtained by "overdriving” a cavity. An example of efficiency versus

beam power is given in Fig. 8.

A much more substantial increase in power may be obtained by overdriving the cavity so that the
beam electrons go through a complete trapping cycle!!”, so that they, on the average, lose, then gain,
then again lose energy to the wave.''? Initial theoretical investigations indicate that a factor of 10
increase in the power may be possible with this method. This would allow the use of a long cavity
[L/x = 8] where relatively modest magnetic field gradients are required, 1o produce the same power
(at equivalent efficiencies) as a shorter cavity, which would require possibly unrealizable gradients.

This possibility will be the subject of future studies.
CONCLUSIONS

We have presented scaling factors useful in the design of gyromonotrons. In particular, we have
given an electric field magnitude, normalized to the frequency, which can be used to determine the out-
put power for any TE,,, mode. This field should be applicable to coaxial, as well as to the open

cylindrical geometry.

For the open cylindrical cavities, it is clear that there are definite bounds on gyromonotron output

powers. For very high frequencies, these bounds may become severe. For example, at 100 GHz, it is
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READ. CHU. AND KIM
impossible to find an operating power for an optimum length cavity (-)% = 8) using the TE;; mode,

and losing less than 20% of the power to ohmic losses.

For CW operation ohmic losses will limit the maximum power. It is clear from Figs. 3 and § that
powers over | MW will cause power dissipation above 1 kW/cm? even when using a relatively high
order mode of TEps;. This limit is valid even when using the beam position enhancement factors, and
therefore will serve as an ultimate upper bound. We note that these limits are optimistic, since it is in
practice difficult to realize the calculated ohmic Q. A more practical limit on the output powers may be
obtained by doubling the ohmic losses given in Figs. 4 and 5. Some advantage may be obtained by
reducing the ohmic loses to cooling the cavity to liquid nitrogen (or lower) temperatures, but it seems

unrealistic to expect operation of a single gyromonotron using an open cylindrical cavity at above a few

MW.
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Table 1. Power Enhancement Factors For Beam Placements

On Higher Order Peaks of the Electric Field

Peak # Enhancement*

1 1
2 2.83
3 4.54
4 6.24
5 7.91
*Equal to j; ::‘: - JE{By) is the value of J{. at its first peak and J{ (8,)
»

is the value of J{ for the o™ maximum. Values of J, from reference (9).

10
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used in the experiments.
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